Spider Dragline Silk Molecular Properties and Recombinant Expression

نویسنده

  • Anna Rising
چکیده

Rising, A. 2007. Spider dragline silk – molecular properties and recombinant production. Doctor’s dissertation. ISSN: 1652-6880, ISBN: 978-91-576-7337-4 Spider dragline silk possesses several desirable features of a biomaterial; it has extraordinary mechanical properties, is biocompatible and biodegradable. It consists of large proteins, major ampullate spidroins (MaSp:s), that contain alternating polyalanineand glycine-rich blocks between non-repetitive Nand C-terminal domains. No full length MaSp gene has been cloned, hence the knowledge of their constitution is limited. The spider stores the silk in a liquid form, which is converted into a fibre by a poorly understood mechanism. Even truncated spidroins are difficult to produce recombinantly in soluble form. Most previous attempts to produce artificial spider silk fibres have included solubilization steps in non-physiological solvents and the use of spinning devises for fibre formation. This thesis presents a novel method for production of macroscopic fibres under physiological conditions, without using denaturing agents. A miniature spidroin is identified that can be produced recombinantly in E. coli when fused to a soluble fusion tag. Upon enzymatic release of the fusion tag, the miniature spidroins spontaneously form macroscopic fibres in physiological solution. These fibres resemble native silk and their strength equals that of fibres spun from regenerated silk. Initial studies suggest that the fibres are biocompatible. This represents a major breakthrough for future biomaterial development. Molecular studies of cDNA and genetic sequences encoding the dragline silk revealed an unexpectedly high level of heterogeneity and the presence of at least two MaSp1 genes. Furthermore, the E. australis MaSp2 was characterised for the first time, as well as a new MaSp-like spidroin. Sequence analysis of previously published spidroin N-terminal domains compared with that of E. australis MaSp1, enabled identification of signal peptides and a 130 residue nonrepetitive domain common to dragline, flagelliform and cylindriform spidroins. Moreover, this highly conserved N-terminal domain was concluded to consist of five positionally conserved -helices. Structural studies using circular dichroism spectroscopy on recombinantly produced MaSp1 Nand C-terminal domains showed that these are folded, stable and soluble, and that salts or pH has no major effect on their secondary structures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber.

Spider dragline silk is a remarkably strong fiber that makes it attractive for numerous applications. Much has thus been done to make similar fibers by biomimic spinning of recombinant dragline silk proteins. However, success is limited in part due to the inability to successfully express native-sized recombinant silk proteins (250-320 kDa). Here we show that a 284.9 kDa recombinant protein of ...

متن کامل

Spider silk fibers spun from soluble recombinant silk produced in mammalian cells.

Spider silks are protein-based "biopolymer" filaments or threads secreted by specialized epithelial cells as concentrated soluble precursors of highly repetitive primary sequences. Spider dragline silk is a flexible, lightweight fiber of extraordinary strength and toughness comparable to that of synthetic high-performance fibers. We sought to "biomimic" the process of spider silk production by ...

متن کامل

Novel Assembly Properties of Recombinant Spider Dragline Silk Proteins

Spider dragline silk, which exhibits extraordinary strength and toughness, is primarily composed of two related proteins that largely consist of repetitive sequences. In most spiders, the repetitive region of one of these proteins is rich in prolines, which are not present in the repetitive region of the other. The absence of prolines in one component was previously speculated to be essential f...

متن کامل

Low-Tech, Pilot Scale Purification of a Recombinant Spider Silk Protein Analog from Tobacco Leaves

Spider dragline is used by many members of the Araneae family not only as a proteinogenic safety thread but also for web construction. Spider dragline has been shown to possess high tensile strength in combination with elastic behavior. This high tensile strength can be attributed to the presence of antiparallel β-sheets within the thread; these antiparallel β-sheets are why the protein is clas...

متن کامل

Recombinant Production and Determinants for Fiber Formation

Spider dragline silk is Nature’s high-performance fiber that outperforms the best man-made materials by displaying extraordinary mechanical properties. In addition, spider silk is biocompatible and biodegradable, which makes it suitable as a model for biomaterial production. Dragline silk consists of large structural proteins (spidroins) comprising an extensive region of poly-alanine/glycine-ri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007